Reevaluating the Shapley Value:
A New Justification and Extension*

Adam Brandenburger T Barry Nalebuff *

Current Version: April 23, 2025

Abstract

Inspired by the bargaining procedure of Shapley, we introduce a novel procedure in which the marginal
contribution of the player joining a coalition is split in any proportion between that player and the
members of the coalition being joined. The internal division among members being joined reflects
their different bargaining strengths. Surprisingly, this more general procedure also leads to the
Shapley value. We see this result as providing additional understanding of and support for the Shapley
value. It shows that the Shapley value arises under more general circumstances, and, arguably, more
intuitively appealing ones. What is essential to obtaining the Shapley value is the random ordering
of how players join existing coalitions, not the allocation of all the marginal contribution to the
joining player. We also explore departures from the random-ordering assumption; this leads to a
new extension of the Shapley value where weights on players depend endogenously on marginal
contributions.

1 Introduction

The Shapley value (Shapley} [1953) results from an axiomatic approach to the allocation of value in a
cooperative game. It has an elegant procedural implementation: let the grand coalition of all players be
constructed by players joining one at a time in a random order. In each ordering, give all the marginal
value created by the new player joining the coalition to that player. The expected value is the Shapley
value.

In this procedure, which we will call the Shapley procedure, the “negotiation” between the new
player and the existing players in a coalition involves an extreme division of value. The player who joins
receives the full amount of the benefit created. This feature has been commented on by Brock (1992):

A criticism of this [Shapley’s] scheme is that a player is awarded his entire (utility) contribu-
tion to a coalition. This violates an intuitive symmetry whereby we would expect the player
to receive only a portion of his contribution to the coalition.

While each of the possible orderings in the Shapley procedure leads to a division of value which
may appear extreme and, at a more prescriptive level, unfair, the average across all the orderings is
balanced and reasonable. Still, at an intuitive level, we think a procedure would be more attractive
both descriptively and prescriptively were the gains more evenly balanced among the parties in each
possible ordering.

*We thank seminar audiences at Washington University in St. Louis, Yale University, and Bianca Battaglia, Jack
Fanning, Elio Farina, John Geanakoplos, Sergiu Hart, Roberto Serrano, Kai Hao Yang, and Jidong Zhou for very helpful
comments. Financial support from NYU Stern School of Business, NYU Shanghai, and J.P. Valles is gratefully acknowl-
edged.

fStern School of Business, Tandon School of Engineering, NYU Shanghai, New York University, New York, NY 10012,
U.S.A., adam.brandenburger@stern.nyu.edu

#Yale School of Management, Yale University, New Haven, CT 06511, U.S.A., barry.nalebuff@yale.edu



In our procedure, the player joining the existing coalition shares the gains with the members of the
coalition in the proportion a:1 — . When o = 1, we recover the original Shapley procedure. In the
focal case of a = 1/2, the gains are split evenly. For all 0 < a < 1, the existing members benefit when
an additional player joins. We think this more general procedure is both more natural and more likely
to be “bought into” by the players.

We are not the first to consider procedures in which the joining player shares the gains with the
other players. In Nowak and Radzik (1994)), Ju, Borm and Rurs| (2007)), and [Malawski| (2013)), the part
of the contribution of the joining player that goes to the members being joined is divided equally among
them. Our innovation is to consider unequal allocations—in order to reflect the different bargaining
powers among the players. For example, in our procedure, a player that adds no value (a dummy player)
does not share in the allocation.

We allow coalition members to have different claims on the 1 — « share to be distributed. This leads
us to allocate the distribution in stages. We begin with equal division, but only up to the smallest
claim among the members sharing the gains. After that point, the member with the smallest claim no
longer shares in the division. We divide the remaining share equally among the remaining members,
but only up to the second-smallest claim. This process continues until the amount to be distributed
is exhausted or all claims are exhausted. If no member of the coalition has a claim to the full 1 — «
share, the residual reverts to the joining player. This procedure allows for what we think is a natural
interplay between the forces of bargaining power and equal division. The equal division at each stage
resembles the “principle of the divided cloth” (O’Neill, 1982; |Aumann and Maschler, |1985)). We return
to this connection in the next section.

We are interested in the case where the amount to be distributed is the marginal contribution of the
joining player and the claims equal the marginal contributions of the players being joined, where the
marginal contributions are to the full set consisting of the existing members and the joining player. We
find, perhaps surprisingly, that this procedure yields the Shapley value for all a. We see our findings
as providing additional understanding of and support for the Shapley value. It shows that the Shapley
value arises under more general circumstances, and, arguably, more intuitively appealing ones. It also
highlights that what is essential to obtaining the Shapley value is the random ordering of how players join
existing coalitions, not the allocation of all the marginal contribution to the joining player. In Section [6]
we allow the ordering to depend on marginal contributions; this leads to a new family of generalized
Shapley values, related to but different from the well-known weighted Shapley value (Shapley, 1953)).

Dividing up the 1 —« share among the members of an existing coalition suggests that each member’s
payoff will depend on the marginal contributions of all the players in the coalition. But the Shapley
value payoff to a player depends only on that player’s marginal contributions. (This fact characterizes
the Shapley value; see [Young (1985).) We still get the Shapley value because these extra dependencies
cancel out. Each player obtains less than their marginal contribution when joining a coalition. But
this shortfall is exactly offset by the extra amounts each player collects when other players join all the
coalitions to which that player belongs.

A procedure is a way of understanding a cooperative solution concept, but it is not a non-cooperative
implementation of the concept. We do not see this as a shortcoming of our analysis. A procedure is
playable in an intuitive sense, where the players agree to various divisions of value and do so without
an exact offer-counteroffer protocol that a non-cooperative analysis would require. Nevertheless, it is
possible to provide a fully non-cooperative game that mimics our procedure and builds on the non-
cooperative implementation of the Shapley value in [Hart and Mas-Colell| (1996).

The Shapley procedure and our procedure build up coalitions by adding an outside player to each
existing coalition (in a random order). We also consider a reverse procedure in which we start with
the full set of players and then potentially exclude players one at a time (in a random order). For each
random construction of a coalition, there is an equivalent deconstruction: instead of players joining in
order ABC, say, we can think of first C', then B, then A contemplating being excluded. The reverse
procedure can be understood as a scenario in which all players are present at the start and consider



what might happen if they fail to reach an agreement. The players agree to accept the expected value of
the exclusion procedure. That expectation is again the Shapley value. The reverse procedure is closest
to the non-cooperative implementation of the Shapley value, to be reviewed later.

As a brief mention of applications of the Shapley value, we point to its classic use in cost allocation
problems (Tijs and Driessen, 1986), voting rules (Shapley and Shubik, [1954)), and general equilibrium
theory (Shapley, [1964; |Aumann and Shapley, 1974), among other areas. For a modern survey, see
Serrano| (2000). More recently, applications to the field of machine learning (ML) have emerged. These
applications include feature importance in predictive models, data importance in model training, and
multi-model (ensemble) methods (Lundberg and Lee, 2017; |Ghorbani and Zou, 2019; Fernandez-Loria,
Provost and Han, [2022; |Rozemberczki et al., 2022)).

A basic challenge in ML applications is that calculating the full Shapley value is typically com-
putationally infeasible, given that the number of orderings increases factorially with the number of
explanatory or predictive variables. The SHAP (SHapley Additive exPlanations) algorithm is a popular
tool that employs a variety of approximations to the Shapley value (see (Rozemberczki et al., 2022)) for
a survey). Our work points to new approximation strategies. First, since our a-procedure evens out
the distribution of value in each order of arrival, and not just after averaging over all orderings as in
the Shapley value, it is plausible that approximations to the Shapley value obtained via sampling only
a subset of orderings will be more accurate under our procedure. Second, our a-procedure leads natu-
rally to a generalization where orderings are sampled according to their likelihoods, which, in turn, are
allowed to depend on the marginal contributions of the variables up for removal. High-impact variables
are up-weighted (less likely to be removed) and low-impact variables are down-weighted. We discuss
this potential application of our work in Section [6]

We begin in Section [2] with axioms that define our general procedure for a given set of claims and a
division rule «. Section [3| connects the claims to the marginal contributions of the players and offers a
numerical example that illustrates how our procedure leads to the Shapley value. Section [4| proves that
our procedure yields the Shapley value. Section [b| modifies our procedure to run in reverse—a procedure
that points to a new generalized Shapley value. In Section [6] we compare our generalized Shapley value
with the weighted Shapley value (Shapley, 1953; [Kalai and Samet, 1987)). Section [7| contains further
discussion of related literature, a comment on proportional solutions, an outline of a non-cooperative
implementation of our procedure, and a brief conclusion. An online appendix (Brandenburger and
Nalebuft] 2025) establishes uniqueness of our a-procedure with a family of procedures satisfying two
axioms and also extends the procedure to NTU games.

2 Three Axioms

Fix a set of players S. Consider the allocation when player i € S joins S\i. In the Shapley procedure,
the marginal contribution created by the joining player all goes to that player. Here, the marginal
contribution is divided up in proportion a:1 — a. Share « goes to the joining member and share 1 — «
goes with priority to members of the existing coalition. When o = 1, the two procedures coincide.

When a < 1, we have to specify how the 1 — a share is allocated among the members of the
existing coalition. We use as a springboard the principle of the divided cloth (O’Neill, |1982; |Aumann
and Maschler, |1985)). Players whose claims exceed the amount being distributed share equally. Players
whose claims are below this amount share equally up to the point of their respective claims. This
approach can be viewed as a multi-player version of the principle of the divided cloth—one that takes
into account the claims of the players being joined and that of the joining player. The guiding principle
is equal division constrained by claims]f]

To bring out the essential features of our approach, we begin with an abstract framework. Let d > 0
denote the amount to be divided and let each player j € S have a claim ¢;. We assume as a convention

! An alternative approach is division in proportion to the claims; see Section



that the c¢; are ordered so that ¢; <cp < ... < C|ss and we define ¢y = 0. If there are tied claims, they
are ordered arbitrarily. Once this ordering is fixed, the claims are fixed for a set S and do not vary
with the relevant subset of players. Thus, player 1’s claim is always ¢, whether player 1 is part of the
coalition S\2, S\3, or of any other coalition S\i with ¢ € S\1. When player 1 is the joining player, that
player’s claim is still ¢;, but, as we will see, that claim is given lower priority than the claims of the
players in S\1.

Our division coincides with the principle of the divided cloth when there are two players in S\i and
at least one of these players has a claim on the full amount.

Example 1. Let S = {1,2,3}. Consider the division between player 1 and player 2 when player 3 joins
S\3 and distributes d. We assume d = 2, and that players 1 and 2 have claims of 1 and 2, respectively.
The first unit of d is claimed by both players and is split equally, while the second unit of d all goes to
player 2. The resulting division of d is (1/2,3/2) between player 1 and player 2.

In cases with more than two players in S\i, we extend our logic as follows. Any amounts commonly
claimed by a subset of players in S\i are shared equally by that subset. Any amount above a player’s
claim goes to the players who do have a claim. This is a different treatment of the n-player case from
the consistency requirement in |[Aumann and Maschler| (1985), and it is therefore unsurprising that it
leads to a different solution concept. Aumann and Maschler obtain the nucleolus (Schmeidler} [1969),
while we obtain a different but also classic solution concept, namely, the Shapley value.

To define our framework formally, fix a player ¢ € S. This is the “joining” player. Consider the
division of d among the members of the set being joined, namely, S\i, given the various |S| — 1 claims
they have. In the case we are interested in, the amount to be divided when i € S joins S\i equals player
i’s claim: d = ¢;. We partition d into ¢ intervals:

{[00,61),[61,02),...,[61;1,01']}5 (1)

We can think of d being distributed in the form of a “flow.” Initially, the flow is directed equally to
all [S]|—1 members of S\i. As soon as the amount distributed exceeds the lowest player’s claim, player 1
no longer shares in the flow going forward. The flow is now directed, again equally, to the remaining
|S| — 2 players of S\i. And so on. This process continues until there is nothing left to distribute or
there is some unclaimed amount left over. Any unclaimed amount reverts to the joining player i. This
procedure is formalized in the following two axioms.

Interval Equality Axiom: FEach interval [cj_1,c;) is divided equally among all players in
S\i whose index is greater than or equal to j. The final interval [ci—1,¢;] is divided equally
among all players in S\i whose indez is greater than i, assuming that set is non-empty. See
Figure 1. Otherwise, the final interval is not allocated to the players in S\i.
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Figure 1: Interval Equality Axiom

When no player in S\i has a claim on the full amount d, the unclaimed portion reverts to the joining
player i. This case arises only if i = |S|.

2The framework can be extended to allow for arbitrary distribution amounts at the cost of additional notation. In
general, we partition d into j* intervals where j* is the largest value of j € S\i such that ¢; < d.



Priority Axiom: Ifi = [S|, the interval [c|s)—1,¢|5|] is allocated to player |S|. See Figure
2.
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Figure 2: Priority Axiom

We call this the Priority Axiom because the claims ¢; for players j € S\i are prioritized over the
claim ¢; of player i. If any member of the coalition being joined has a claim on the full amount to
be distributed, then everything goes to this coalition. Only when i = |S| and js)-1 < ¢|g| is there a
(non-empty) interval [c|g|—1, ¢|g|]. This amount is unclaimed by members of S\i, and the joining player
i’s claim on this interval is then satisfied.

The Priority Axiom is an essential feature of any 1-player game. Player 1 always joins the null set.
There are no players in the null set and thus no existing player has any claim on d. By assumption,
d = ¢1(S) and so Player 1 has a claim on the full amount. Thus, d is fully allocated to the joining
player. Absent the Priority Axiom, we would have an inefficient result in any 1-player game. Similarly,
when S\i is non-empty, if there is some unclaimed portion of d, the Priority Axiom ensures that the
allocation is always efficient.

Example 2. Let S = {1,2,3,4}. Suppose the claims in S are ¢; = 1,0 = 2,¢3 = 5,¢c4 = 6,
and player 4 is the joining player so that d = 6. Here the partition according to expression || is
{[0,1),[1,2),[2,5),[5,6]}. The allocations to the players in S\4 from first two intervals are (1/3,1/3,1/3)
and (0,1/2,1/2). The third interval [2,5) goes entirely to player 3. Player 4 gets no allocation from
these intervals, since the claims of the players being joined are prioritized. However, none of the three
players being joined has a claim to the interval [5,6], which therefore reverts to player 4. The resulting
allocation is (1/3,1/3+1/2,1/3+1/2+ 3,1).

We introduce a final axiom concerning the division between the player joining a coalition and the
coalition being joined. The parameter a describes the bargaining power of the player joining the group.
When a = 1, the joining player does not share anything with the players in S\i. When a = 0, the
entire amount d is allocated to the players in S\i—except when there is an unclaimed amount and the
Priority Axiom comes into play. For 0 < a < 1, both the amount to be distributed and the claims by
the coalition being joined are scaled by 1 — a.

Note that « is fixed for a given set S. In particular, the bargaining power a does not vary with
the player i joining S\i. However, we do allow a to vary across sets S. As an example, « = 1/|5] is
permitted, in which case the bargaining power of the coalition S\i is proportional to its size.

Power Axiom: For a given bargaining parameter «, the amount ad goes to the joining
player i, and the remaining amount (1 —«)d is distributed according to the Interval Equality
and Priority Axioms, where claims are also scaled by 1 — a.

Example 3 contd. Continuing the previous example, if « = 1/2, then 1/2 x 6 = 3 will go di-
rectly to the joining player. The other 3 wunits follow the prior allocation, just multiplied by 1/2.
The adjusted claims are (1/2,1,5/2,3) for the 8 units to be distributed. The adjusted partition is
{[0,1/2),]1/2,1),[1,5/2),[5/2, 3]}, and the resulting total allocation is (1/6,1/6+1/4,1/6+1/4+3/2,3+
1/2).



3 Specification of Claims

In the setting of the principle of the divided cloth, claims are exogenous. In this paper, the claims
are endogenous to the cooperative game. We are interested in the claims made by the members of a
coalition S, as different members i € S join S\i. As in the prior section, claims are fixed for a fixed
set S; they do not vary with who joins and who is being joined. We adopt core-like logic |Gillies| (1959)
and take each player’s claim to be equal to that player’s marginal contribution to S. This assumption
implies that only members of S share in the gains. The core argument is that a player who claims more
than their marginal contribution will be excluded by the other members of S.

Let N be the player set. Associated with each coalition S C N is a real number v(S) > 0, namely,
the value created by the players in .S. We assume that v is superadditive, that is, v(SUT) > v(S)+v(T)
whenever SNT = (. Let m;(S) = v(S) — v(S\i) denote the marginal contribution of player i to S.
Superadditivity and V(.S) > 0 imply m;(S) > 0. We add a fictitious player 0 who is not a member of
any coalition and set mo(S) = 0 for all S in order to simplify later equations.

We adopt the following labeling convention: for each S, order the players according to their marginal
contributions to S, so that mg(S) < mi(S) < -+ < myg(S). If two players have equal marginal
contributions, order them arbitrarily. This ordering will generally be different across different sets S.
When the meaning is clear, we write m; for m;(S) in order to reduce notation.

Claims: Set ¢; = m;(S) for all j € S.
Amount Divided: Set d = m;(S) when player ¢ joins S\i.

The c; inherit the weakly increasing order of the m; and so are ordered as in the previous section.
An immediate implication of our specification of claims is that a dummy player will have a claim of 0,
and so, by our Interval Equality Axiom, will always receive 0.

The following three-player example illustrates how our three axioms work together and also provides
intuition for why our procedure gives each player their Shapley value.

Example 3. Consider a three-player coalition S where m1 < mo < ms. Suppose first that « = 0 so
that the Power Axiom grants O to the joining player. When player 1 is the joining player, it receives 0
because the amount d = my is fully claimed by players 2 and 3. When being joined, player 1’s claim is
limited to my. It splits this amount equally with either player 2 (when player 3 joins) or player 8 (when
player 2 joins). Thus, the average amount player 1 receives is 1/3 x [0+ m1/2+m1/2] =m1/3. When
a =1, player 1 gets its entire marginal contribution my when it is the joining player and 0 otherwise:
1/3 x [my1 4+ 0+ 0] = m1/3. The average payout to player 1 is the same in both cases.

When o = 0 and player 2 is the joining player, it also receives 0 directly and 0 under the Priority
Axiom. When being joined, player 2’s claim is limited to mo. When player 1 is the joiner, the total to
be distributed is m1, which is claimed by both players 2 and 3, and thus split equally. When player 3 is
the joiner, the total to be distributed is ms. Player 2 splits mi equally with player 1 and also receives
the full amount mo — my, at which point player 2’s claim is exhausted. The remaining ms — mo reverts
to player 3. The average amount player 2 receives is 1/3 x [0+ m1/2+m1/2+ (ma —mq)] = ma/3, the
same as when o = 1.

Finally, when o = 0 and player 3 is the joining player, it receives ms — mo under the Priority
Axiom. When player 1 is the joiner, player 8 splits m1 equally with player 2. When player 2 is the
joiner, player 8 splits m1 equally with player 1 and also receives the full amount mo —my. The average
amount player 3 receives is 1/3 x [(m3 —ma) +m1/2+m1/2+ (ma2 —m1)| = ms3/3, once again the same
as when a = 1.

In this example, all players receive on average the same amount when o = 0 as when o = 1. But
the case o = 1 is exactly the Shapley procedure (where the joining player receives the full marginal
contribution). The Power Axiom implies that, for intermediate values of «, the payoff received by each



player is the a: 1 — a weighted average of what that player receives at & = 1 and a = (0. Since these two
payoffs are the same, each player receives the same payoff for all values of . Moreover, this constant
payoff is the Shapley value. In the next section, we show that this result holds in full generality.

4 The a-Procedure

We now analyze a general transferable-utility (TU) cooperative game under our a-procedure and show
that the expected payoffs to the players are independent of . This will establish that our procedure
yields the Shapley value for all a.

Fix a player set N. The a-procedure works as in Shapley| (1953) by considering all random orderings
of the set N, which induce all random orderings of any coalition S C N E| We focus on the |S| possible
orderings for the last step in how coalition S is formed. For each pair of players (¢,5) € S, let 7;(S, i; @)
be player j’s payoff when i joins S\i. We allow ¢ = j. This payoff is determined by the bargaining
parameter « and our three axioms. Because orderings are random, the average value of 7;(S,; ) over
the |S|— 1 equally probable cases where player j is being joined and the one case in which j is the joiner
is given by

(S5 a) Zﬂj S, i; ). (2)
‘S‘ €S
The Shapley procedure coincides with the a-procedure when o = 1. Each player j receives m;(.5)
when joining S\j and 0 in the other |S| — 1 cases where a player i € S\j joins j. Thus 7;(S5;1) =
m;(S)/]S|. We can see this algebraically by writing the Shapley value to player j as:

sn= 3 (4) o= X () = X (5) men @

SCN\j SCN,jeS SCN,jes

In the general case, each player j € S receives am;(S) when joining S\j and, when player ¢ joins S\,
a share of the amount (1 — a)m;(5).

To specify the division of the amount (1 — a)m; among the |S| — 1 players in S\i (and to player i
as well, when there is an unclaimed amount), we partition the amount d = m; just as in the partition
(1) in Section 2:

{[mo,ml),[ml,mg),...,[mi_l,mi]}. (4)

The Interval Equality Axiom says that when player ¢ joins S\i, player j € S\i receives a 1/(|S| — k)
share of the interval with ending index k. This allocation to j holds for intervals up to the smaller of
J (since its maximum claim is m;) and ¢ (the number of intervals into which the total amount m; is
partitioned). Thus for j # i

min{j,i}

i (S,i;0) = (1 — ) ; % (5)

When player j joins S\j, it receives am;. In addition, when j = |S|, the Priority Axiom dictates
that j also receives (1 — a)(m g —mg—1). Putting everything together, the a-procedure specifies that

3In Section @ we consider a generalization in which arrival order (or coalition formation) depends on the marginal
contribuitions.



when player i joins S\, player j receives a payoff m;(S,; ) given by:

min{j,i}
Mg — Mp— e
. (1-a) Z ﬁ if j # s
(S, ) = k=1 (6)
amg; ifj:i<‘5’;

amg| + (1- a)(m‘s‘ — m|5|,1) if j=i=19|.
Theorem 1. In the a-procedure, 7;(S; o) = w;(S;1) for all a in [0, 1].

Proof. Fix a coalition S. We first show that 7;(S, ;) = (S, j;«) for i,5 € S. This is immediate if
j =1. If j # 4, the result follows since Equation [5|is symmetric in ¢ and j.
Now consider the expected payoff 7;(S; ) to player j € S. We have:

m;(S)
(S5 ) ;i (S, i) = mi(S,7; ) . 7
|s§ J |S|; S| "

Here, the second equality comes from interchanging ¢ and j. The third equality holds because, for all
«, player j’s marginal contribution is fully allocated across the set of players i € S. We conclude that
7j(S; a) is independent of «, from which 7;(S; ) = 7;(S;1) for all a, as required. O

The idea of the proof of Theorem [I| is that what a player gives up when joining a coalition is
exactly offset by what that player gets when it is inside the coalition and each of the other players joins.
Consider, for example, player 1. It gives up (1 — a)m; when it joins the coalition. But, by the Interval
Equality Axiom, it gets back (1 —a)my/(|S| —1) a total of |S| — 1 times—once for each time any of the
other |S| — 1 players joins it in the coalition. The loss and gains exactly offset each other. The proof
establishes that a similar argument holds for each of the other players. The Priority Axiom takes care
of the case when the joining player has the largest marginal contribution, so that the claims inside the
coalition do not exhaust the amount to be distributed.

Corollary 1.1. In the a-procedure, the expected payoff to each player is the Shapley value for all o in
[0,1].

Proof. When a = 1, each player j € S receives m; when joining S\ j and receives 0 when i € S joins S\i.
This case coincides with the Shapley procedure. By Theorem [I], player j receives the same expected
payoff for all «. O

5 A Reverse Procedure

Our a-procedure follows the Shapley procedure in that players join one at a time as the player set is
built up to obtain the grand coalition V. In this section, we start with the grand coalition and examine
what might happen if the players fail to reach an agreement on dividing the total value v(IN). In the
reverse procedure, the players bargain in the shadow of an elimination process that operates if they
cannot agree on a division.

We believe the reverse procedure is of intrinsic interest, but we also see two additional reasons to
study it. First, the reverse procedure suggests a new generalization of the Shapley value; see Section [6]
Second, the reverse procedure naturally suggests a non-cooperative implementation of the Shapley value,
analogous to the one in Hart and Mas-Colell (1996); see Section

In our reverse procedure, we assume that if agreement over the division of v(NV) is not reached,
then a player ¢ € N is chosen at random to be at risk of being eliminated from the grand coalition and
thereby getting 0 in any subsequent division. This player ¢ bargains with the other players over the
payoff it will accept in order to remain in the grand coalition. The reverse procedure determines this



payoff by assigning player i an « share of its marginal contribution to v(V), while the other players split
the 1 — « share of this marginal contribution in exactly the same fashion as in our earlier a-procedure.
Letting 7/(N; a) denote the resulting expected payoff to player j, we have:

7w (N;a) |N| Z%:V {77] (N,i;a) + w0 (N\i; a)] , (8)

where 7;(N,i; «) specifies the a: 1 — o split just as in Equation@ (applied to S = N) and 7/ (N\i; )
is the expected payoff that player j, ranked j in N and ranked j(i) in N\i, anticipates in the game
without .

To determine 77 (N \i; ), we repeat the hypothetical elimination process. A player h € S\i is chosen
at random to be at risk of elimination. There is an «.: 1 — « division of player h’s marginal contribution
to S\i, where the split is now between h and S\{7, h}. This hypothetical elimination process next moves
to the set of players S\{i, h}, and it continues in analogous fashion until only one player remains.

For each order of potential elimination of players under the reverse procedure, the expected payoffs
to all players are identical to the expected payoffs in our previous a-procedure—but where the order of
joining is the reverse of the order of elimination. For example, suppose the order of potential elimination
is 1, 2, 3 (where the players are labelled according to their rank in V). The expected payoffs would be
identical under the a-procedure when the order of joining is 3, 2, 1. In both cases, player 1 bargains
with the coalition {2,3} and player 2 bargains with player 3. With all | V|! orderings equally likely, the
expected payoffs will be the same whether the procedure is run forward or in reverse. The expected
payoffs under our reverse procedure therefore coincide with those under the a-procedure.

6 Generalized Shapley Values

Shapley (1953) and Kalai and Samet| (1987) extended the original Shapley value to incorporate weights
that depend on the identity of a player. These weights can be understood as influencing the order
in which players join existing coalitions. Our reverse procedure suggests a different way to generalize
the Shapley value via weights. In the reverse procedure, we supposed that all players face an equal
chance of elimination at each stage. More generally, some players might face a higher probability of
elimination than others. For example, if a coalition breaks down, it might do so in the least expensive
way—meaning that a player with the smallest marginal contribution would be the first to be at risk of
elimination.

We mentioned in the Introduction the possible application of this approach to machine learning
(ML). Calculating the Shapley value requires evaluating n! orderings, and this is not computationally
practical when n is large (Rozemberczki et al., [2022). A common solution in the ML field is to estimate
the Shapley value by sampling the orderings. No estimation is required if coalitions break down in the
least-cost way at each step, since the number of orderings falls from n! to 1. Even if all orderings are
possible, but the probabilities of different breakdown orderings are unequal, this makes estimation more
efficient.

The idea that some coalitions are more likely to form than others builds on |[Aumann and Dreze
(1974) Section 12.6) and |Owen| (1977). Some coalitions are imagined to form first because of the large
value they create for their members. We differ from |Aumann and Dreze (1974) in that they allow a
coalition to break up in the event another player joins the bargaining. |Owen| (1977) assumes that when
a coalition bargains with the joining player, the gain is split evenly, which is akin to setting o = 1/2 in
our setting, and the division of value inside the coalition being joined sets the payoff differences across
the players according to the Shapley value. Thus, Owen employs the Shapley value as an input to the
division procedure.

Our generalized approach employs the same division method as in the a-procedure. The difference is
only in the order of coalition formation. An example adapted from |Littlechild and Owen (1973) makes



the comparison clear.

Example 4. Three airlines share the cost of a common runway. Suppose airline 1 requires a runway
of length 1, while airlines 2 and & each require a runway of length 2. The cost per unit length is 1. If
all airlines are equally likely to be at risk of elimination, then airline 1 earns a payoff of a when it is
the first to be at risk, (1 — a)/2 4+ a when it is the second at risk, and (1 —«)/2+ (1 — «) when it is the
last to be at risk. On average, airline 1 earns 2/3. This is its Shapley value—a fact we could deduce
from Corollary[1.1] and the observation that, when ordering is random, the reverse procedure yields the
same expected payoffs as the a-procedure.

Now consider a weighted variant of this game in which if the coalition {1,2,3} breaks down, airline 1
s the first to be at risk of elimination because that results in the smallest loss of value. This line of
argument leads to two equally likely elimination orderings: airline 1—airline 2 and airline 1—airline 3.
The resulting expected payoffs to airlines 1, 2, and 3 are a,, (1—«)/2+1, and (1—«)/2+ 1, respectively.
Airline 1’s expected payoff is the same as in the first component of the equal-likelihood case above. The
remaining amount of 3 — « is split equally in expectation between airlines 2 and 3.

These expected payoffs depend on the bargaining parameter «. Airline 1 might do better or worse
than its Shapley value payoff of 2/3. This makes sense. If a = 1, it is advantageous to be the first
player at risk of elimination. If o = 1/2, so that the eliminated player receives one half of its marginal
contribution, then airline 1 receives 1/2, which is less than its the Shapley value.

For a fixed value of a, our weighted Shapley value yields a range of allocations to a given player,
depending on the weights on different orders of risk of elimination. In Example 4] for o« = 1/2, airline 1’s
expected payoff lies in the interval [1/2,2/3]. The best case for airline 1 is when the order of risk of
elimination is random, in which case it pays 1/3 of the cost of the first leg and therefore nets 2/3. The
worst case for airline 1 is when it is the first to be at risk of elimination. In this case, airlines 2 and 3
have, in effect, pre-formed an alliance. Airline 1 is bargaining with the coalition {2, 3}, and therefore
pays 1/2 and nets 1/2. (These calculations for airline 1 are independent of the length of runway required
by airlines 2 and 3, provided the length exceeds 1.) Generalizing from this example, we believe that
calculating an interval of potential payoffs based on varying weights, where the variation comes from
different assumptions about risk of elimination, make intuitive sense.

Our weighted procedure can also be run in the forward direction, as in our a-procedure. Returning
to Example 4] we now assume that the first coalition of airlines to form is the one that creates the
largest value, namely, the coalition {2,3}. Airline 1 joins last. The fact that the ordering is the same
in reverse and forward directions is a consequence of there being only three players in the game. With
four or more players, the forward and reverse weighted procedures will generally differ. For example, in
the forward direction, the two players that create the largest value are the first coalition to form. But
one of the players in this coalition might have the lowest marginal contribution to the grand coalition
and would therefore be the first to be at risk of elimination in the reverse procedure. In general, the
player’s payoffs depend both on the endogenous weights and on whether the procedure runs forward or
in reverse.

Summing up, our approach to defining a generalized Shapley value involves introducing weights that
depend on the players’ marginal contributions and are therefore endogenous to the game. Our weights
are anonymous—a player’s power depends of their marginal contributions, not on their identity. The
endogeneity also delivers a symmetry property. Consider two players who have the same standalone
values. Our approach delivers an equal split in the two-player bargaining between these players—
because their marginal contributions to each other are always equal in this case. (The two players may
receive unequal allocations in larger sets.) We think preserving symmetry in this two-player case is
natural and that power—at least, endogenous power—should arise from asymmetries across players.
In our generalized Shapley scheme, asymmetries are understood in terms of differences in marginal
contributions. We generate a range of outcomes, where the boundary cases are: (i) a fully deterministic
ordering defined by increasing marginal contribution; and (ii) a completely random ordering. We view
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all outcomes in this range as reasonable and of interest, while outcomes outside this range seem less
obviously natural.

7 Discussion

This section goes into more detail on related literature, comments on proportional solutions, offers a
non-cooperative implementation of our procedure, and concludes.

7.1 Related Work

We previously noted the connection to |O’Neill| (1982) and |Aumann and Maschler| (1985)). When there
are two players and the “cloth” is fully claimed, our axioms yield the same answer as the principle of
the divided cloth. Aumann and Maschler extend the divided cloth principle to games with more than
two players by imposing a consistency axiom which, as is usual in cooperative game theory, relates the
solution of the overall game to solutions of subgames. Our a-procedure extends the two-player case
differently—the Interval Equality Axiom and the Priority Axiom directly specify the division of value in
games with any number of players. Our axioms possess a flavor of the principle of the divided cloth in
that they dictate equal division, but only among those who have a claim to the contested amount. With
different extensions, /Aumann and Maschler| (1985) and this paper naturally obtain different answers,
namely, the nucleolus vs. the Shapley value.

The idea that the joining player’s value would be divided up between the joining player and the
coalition being joined goes back to Nowak and Radzik| (1994)), Ju, Borm and Rurs (2007, and Malawski
(2013). The key difference between our approaches is that the earlier papers employ an equal division
among the members being joined. Even so, the share going to the joiner can vary. When o = 1/|5|,
so that the shares to the joiner and the joined coalition are proportional to their relative sizes, the
expected payoffs are known as the solidarity value; see Nowak and Radzik (1994). When « is a constant
independent of S, the expected payoffs are an a.: 1 — a weighted average of the Shapley value and the
egalitarian solution, v(N)/|N|[]

Malawski (2013) defines a family of procedures for a game, and provides necessary and sufficient
conditions for the payoffs to be the expected values under a procedure. In this framework, the allocation
within S\i depends on the order in which the players join S. For example, the allocation could all go
to the player of S\i who joins first or to the player who joins just before i. This might appear to be an
unequal division. But, as Malawski recognizes, the random order of joining implies that the expected
allocation to each player in S\i is always equal. Thus, the expected payoff under any procedure where
a fixed share a goes to the joiner and 1 —« to S\i is always an a: 1 — «a weighted average of the Shapley
value and the egalitarian solution.

While our a-procedure builds on this earlier work, an important difference is that we allow the
weights to be a function of the marginal contributions. For each interval k, our weights are constant
across players, but only players whose marginal contribution is at or above m;, get to participate in this
interval. For this reason, the weights are not independent of marginal contributions. This flexibility
allows our solution to be invariant to the standard normalization in which v(i) = 0 for all i € N.

We assume that only players of S share in the gains when player i € S joins S\i. In Felsenthal and
Machover| (1996, [1997)), Bernardi and Freixas (2018), and |[Malawski| (2013)), the gains are distributed
between members in S and those in N\S. For example, in Felsenthal and Machover| (1996, (1997)) and

“This is different from the solution where player i receives v(i) + [v(N) — >_, v(i)]/|N|, which is known as the center of
imputation set (Driessen and Funaki, [1991]) or the equal-surplus solution (Moulin) 2003). The reason for this difference is
that the previously studied procedures are not invariant to the standard normalization when o < 1. This is illustrated by
a two-player game in which v(1) = 0,v(2) = 10, and v(12) = 10, so that player 1 is a dummy player. Consider the solution
where all the marginal contribution goes to the player being joined. On average, each player receives the egalitarian
solution v(12)/2 = 5. If we normalize the game so that v(1) = v(2) = 0, then normalized v(12) = 0. Now, player 2 receives

10 (from the normalization) and 0 from the game, for 10 in total, while player 1 receives 0.

11



Bernardi and Freixas| (2018) players arrive in a random order, and each arriving player randomly votes
“yes” or “no”. The “yes” voters join the prior yes voters and are given their marginal contributions to
that set. The “no” voters are given their marginal contributions to the full set N excluding the prior no
voters. In Malawski (2013]), the marginal contribution of the joining player could be distributed equally
to the players in N\S. However, Malawski shows that a procedure where gains are shared with players
in N\S is equivalent to a reordered procedure in which gains are exclusively shared with those in S.
This reordering property extends to our procedure as well.

Various combinatorial formulas yield the Shapley value. For example, Kleinberg and Weiss| (1985)
and Rothblum| (1985) give each player an equal share of the total and then make adjustments based
on how much value the coalitions containing a given player create relative to the average coalition.
Rothblum! (1988) provides an elegant formulation that brings the combinatorial formulas from |Shapley
(1953)), Harsanyi| (1963), and Kleinberg and Weiss| (1985) into a unified framework. Our a-procedure
is a novel implementation of the Shapley value. Analogously, these other computational formulas may
suggest other new procedures that lead to the Shapley value.

7.2 Proportional Solutions

A potential alternative to our Interval Equality Axiom is proportional division. The total amount d is
divided in proportion to each player’s claim c;. We continue to suppose that claims are marginal contri-
butions and the amount to be divided when player i joins the coalition S\i is ¢’s marginal contribution
m;. The amount that player j € S\i receives, summed over all cases (including when j is the joining
player) is

1 m;

— = X (1 —a)m,. 9
51 2 g T v

Combining this with the separate amount am; that player j receives when it joins, the resulting payoft
to j is:
m;j

1
—fam;+(1—a) Yy —=————
! 2 kes Mk

mg
X mg| = — . 10
5] 1= 131 (10)

€S
Proportional division—at least, in this form—Ieads directly to the Shapley value.

Under proportionality, the division of each interval (defined in partition depends on all the players’
marginal contributions. Under our a-procedure, each interval is divided up in a fixed manner, namely,
equally, among those who have a claim to that interval. An issue with proportional division, as we have
defined it, is that the joining player is included in the division. The players being joined might exclude
the joining player when dividing up the 1 — « share since the joiner is already getting an a—shareE] This
route suggests a different proportional solution, one that excludes the joining player. Here, when player
i joins S\i, player j € S\i receives:

m;

m X (1 —a)m,. (11)

This form of proportional division—which we call restricted proportional division—has not, to our
knowledge, been treated in the literature. We examine it briefly in the context of our earlier Example
but leave a thorough investigation to future work.

Example 6 contd. We examine restricted proportional division when o = 0. For positive values of
«, the solution will be a weighted average of the Shapley value (o« = 1) and the a = 0 solution. Under
restricted proportional division, airline 1 receives 0 + 1 + 2/3 when it arrives first, 0 + 2/3 when it
arrives second, and 0 when it arrives third. The expected value is 7/9, so that airline 1 pays 2/9. This
is less than the 1/3 that airline 1 pays under the Shapley value. If we were to change the parameters

SWhen o = 0, this argument has less force, since then the joiner does not receive a separate fraction of the total.
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and increase the runway length required by airlines 2 and 3, airline 1’s payment would fall, converging
to 0 in the limat.

Proportional division does not mean that airline 1 pays a share of the total cost proportional to
the length of the runway it uses. That kind of proportional division would lead airline 1 to pay 2/5
and would be detrimental to the “smaller” airline relative to the Shapley value. The same detrimental
result would arise if airline 1’s share of the total value was based on the marginal contributions to the
grand coalition. In both forms of proportional division, the proportions are based on the contributions
to each subgame. Thus, in regular proportional division, Airlines 1 and 2 have an equal claim when
2 joins 1 (or vice versa), since the marginal contribution to this pairing is 1 for both airlines. In
restricted proportional division, airline 1 does better than under the Shapley value—and therefore the
a-procedure, as well. Airline 2 has a larger claim than airline 1 when 3 joins {12}. Even so, airline
1 does better under restricted proportional division than under the a-procedure because it receives a
smaller share of a larger amount. It gets 1/3 of 2 rather than 1/2 of 1.

7.3 Non-Cooperative Implementation

There is a longstanding program to find non-cooperative implementations of cooperative solution con-
cepts. |Gul (1989, 1999)) initiated this program in the case of the Shapley value, with further progress
made by Winter| (1994)), [Hart and Mas-Colell (1996), Hart and Levy| (1999)), [Pérez-Castrillo and
Wettstein (2001), [Serrano (2005} [2021)), [Ju, Borm and Rurs| (2007)), and [McQuillin and Sugden| (2016)).

We can convert our reverse a-procedure into a non-cooperative game following closely the approach
in Hart and Mas-Colell (1996) and Ju, Borm and Rurs (2007). The reverse a-procedure involves a
division of value between the player at risk of exclusion and the other players. The same division
can be obtained via a suitably defined non-cooperative game. A player i is selected to be at risk of
exclusion. A player j (possibly ¢) is then selected to be the proposer and to make an ultimatum offer
to the other players. Player j claims the full marginal contribution of player i and offers everyone else
(itself included) their Shapley value in the game without 7. In equilibrium, such proposals are always
accepted. Each player’s chance of being selected as the proposer when i is at risk is m;(.S,7; o) /my,
where 7;(S,; «) is given by Equation @ In particular, player ¢ has an « chance of being the proposer
and the remaining 1 — a probability is allocated among the other players (except for the reversion case).
When all players have an equal chance of being at risk of exclusion, this non-cooperative game and our
reverse a-procedure are analogs, and the equilibrium payoffs are equal to the Shapley values. This game
is close to the game in Hart and Mas-Colell (1996)), with two main differences. First, before proposing,
player j knows which player ¢ is at risk. Second, the selection probabilities for the proposer depend on
the marginal contributions.

7.4 Conclusion

We introduce a new bargaining procedure that generalizes the original Shapley| (1953)) procedure in
sharing gains in an «:1 — « ratio between the player joining a coalition and the existing members
of that coalition. Our distinctive contribution is that we allow for an unequal division among the
existing members, one that reflects different bargaining powers. In the spirit of the principal of the
divided cloth, we allocate value among existing members equally, subject to respecting the marginal-
contribution bound of each player in the coalition. The unequal bounds (or claims) are what leads to
the unequal divisions. Surprisingly, our a-procedure leads to the Shapley value.

We did not define the a-procedure with the goal of arriving at the Shapley value. Instead, we
aimed for a procedure that is balanced in how value is distributed—both between joiner and joined,
and among existing coalition members. This objective makes the a-procedure more complicated than
the Shapley procedure, but we believe the underlying logic behind the Interval Equality and Priority
Axioms is straightforward and easily interpretable. Our main result (Theorem [I|and Corollary says

13



that these two axioms yield the Shapley value.

The a-procedure further suggests a new solution concept for cooperative games that differs from the
traditional weighted Shapley value in allowing endogenous weights that depend on marginal contribu-
tions. This generalization of the Shapley value is motivated by the idea that some coalitions might be
more likely to form than others, depending on the value they create.

We believe that the a-procedure—especially in the focal case where aw = 1/2 rather than the original
Shapley case where a = 1—adds an important justification to both descriptive and normative uses of
the Shapley value as a cooperative game-theoretic solution concept.
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